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Appendix
The following is an appendix which provides additional imh@tion to substantiate the claims of the paper.
Appendix 1 describes details of the high-resolution protein backlmmmeputation from residual dipolar coupling data.
In Appendix 2, we state Chernoff boundsAppendices 3 and 4 describe the pseudocode for the Hausdorff-based

similarity measure and the NOE assignment algorithwnA, respectively.Appendix 5 provides a detailed proof our
main theorem (Theorem 5.1 in our pap®r Finally, in Appendix 6 we present an analysis of the running timeiaiNA.

1. Details of Protein Backbone Structure Determination from Residual Dipolar
Couplings

RDC-EXACT refers to the first polynomial-timde novoalgorithm (in fact, linear-time in the number of residuesaof
protein) for high-resolution protein backbone structuegedmination developed in Refs. 13 and 11. It takes as igut (
two RDCs per residue (e.g., assigned NH RDCs in two media oaNtHCH RDCs in a single medium), (b) delimited
a-helices ang3-sheets with known hydrogen bond information between gateands, and a few unambiguous NOEs
(used to pack the helices and strands).c-EXACT differs from previous approaches for computing backbongare
mation in native state from experimental data in (a) the remalb restraints used, (b) how backbone dihedral angles are
computed, and (c) how the conformational space is searetmceXACT does not randomly search the entire confor-
mation space to find solutions consistent with the RDC datdhé®, it formulates the problem such that the structures
computed arexact solution®f a system of quartic monomial equations derived from the&CRIQuation

r= DmaxVTsva (1)
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wherer is the experimentally observed RDD,., is the dipolar interaction constaiftjis the3 x 3 Saupe order matrif

or alignment tensothat specifies the ensemble-averaged anisotropic oriemtaft the protein in the laboratory frame,
andv represents the internuclear bond vector. Letting, = 1 for simplicity of exposition, and considering a global
coordinate frame that diagonalizes the alignment teSs¢such a coordinate frame is callgdincipal order frame
(POF)), Equation (1) can be rewritten as

r= S:mvl‘2 + Suyy2 + 522227 (2)

whereS,,, Sy, andsS. . are the three diagonal elementsSofandz, y andz are, respectively, the, y andz components

of the unit vectow in a POF which diagonalizeS, which is a 3x 3 symmetric, traceless matrix with five independent
elements: '° Given NH RDCs in two aligning media (or NH and CH RDCs in singiedium), the associated NH
vectorv must lie on the intersection of two conic curves? We state the following two propositions without proof
(detailed proofs an be found in Refs. 11 and 13), which forendbrner-stone of the exact-solution based polynomial
time algorithm for backbone computation.

Proposition 1.1. (Ref. 11). Given the diagonal Saupe elemefis and S, for medium 1,5’ and S?’Jy for medium 2
and a relative rotation matriR between the POFs of medium 1 and 2, the square of{#t@mponent of the unit vector
v satisfies a monomial quartic equation.

Proposition 1.2. (Ref. 11). Given the NH unit vectors; andv;; of residues and: + 1 and theN—CO: vector of
residuei the sines and cosines of the intervening backbone dihediglea(¢, 1) satisfy the trigonometric equations
sin (¢ +g,) = h, andsin (v + g,) = h,, whereg; and h; are constants depending an andv,;, andg. and hs
depend orv;, v;41, sin ¢ andcos ¢. Furthermore, exact solutions fain ¢, cos ¢, sin ¢, andcos ¢ can be computed
from a quadratic equation by tangent half-angle substituti

RDC-EXACT reduces the problem of searching the conformational sgafiading the roots of a system of low-
degree (quartic) monomial equations, which are discratéefand algebraic. A depth-first systematic search over all
possible conformations (solutions) that employs a pravgiolining strategy (which guarantees pruned conformations
need not be considered further) based on a real solutionditte a Ramachandran Filter is used to output the confor-
mations of a given secondary structure element that agnedseist with both the experimental RDCs and the geometry
of the corresponding secondary structure type.

Given a set of computed secondary structure elements, tiddae fold is computed by computing the relative
translations between these oriented secondary strudemeerts. This is done by using a sparse set of NOE distance
restraints. At least three NOEs are needed to pack a paircohdary structure elements, and to resolve the 4-fold
orientational degeneracy in the relative pose betweendgberslary structure elements arising due to the symmetry of
the dipolar operator (when RDCs are measured in one medium).

A loop connects two consecutive secondary structure elesmbeinlike secondary structure elements, the geometry
of a loop does not follow any specific pattern, and can be lefsred. Given the orientation of the end peptide plane of
one and the beginning peptide plane of another secondastiste element, the loop computation (a.K@op closurg
problem involves computing an ensemble of loops that fit tiesimg portion of the backbone chain without violating
the backbone geometry, and simultaneously satisfying xperanental data recorded for the loop. The loop closure
problem is an instance of an inverse-kinematics probleni¢twban be solved exactly to enumerate all solutions (16
of them at most) for 3 residue-long loops, i.e., for 6 degmefeseedom (DOF) in the absence of experimental data.
For loops with more than 3 residues (i.e., with more than 6 B)A@is problem is underconstrained, thus a continuous
family of solutions are possible in the absence of addilicoastraints. RDCs provide algebraic restraints on thbajlo
orientation of many bond vectors in the loops. Whenever tw&RPer residue are available for each residue in a loop,
we UseRDC-EXACT with real solution and steric filters to compute the lodpsn case of missing RDC data for the
loops, we used an enhanced version of robotics-based cydidinate descent (CCD) algoritAm in conjunction with
a steric filter to compute loops that also minimize the déwbetween the experimental RDCs and the back-computed



RDCs (measured on the respective bond vectors in each eg@sahd without any steric clash with the remainder of the
protein structure.

2. Chernoff Tail Bounds

The Chernoff bound provides a bound for the success of niajgreement for a sequence of independent events. The
following lemma (Lemma 2.1) gives common formats of the @bérbound that determines the bound on the number
of trials in order to obtain the majority agreement up to ecéjel probability.

Lemma 2.1. (Chernoff Tail Bounds> '): Let X,- - -, X,, be a sequence of independent Poisson trials such that
Pr(X;) = p;, where0 < p; < landl < i < n. Suppose thak = > ' X, andpy = E(X) = >0, pi.
Then for any > 0, we have

Pr (X < (1—e)u) < exp(—pe/2), forany0 < e < 1; (3)

Pr (X > (1+e)u) < exp(—pe?/(2+¢)), foranye > 0. (4)

Based on Lemma 2.1, we can easily derive the following ex@driemma of tail bounds that is useful for the proof
of Theorem 5.1 (Section 5 in our papeandAppendix 5).

Lemma2.2. (Extended Tail Bounds): Let X1, - -, X,, be a sequence of independent Poisson trials suchh@X;) =
pi, Wwhere0 < p; < 1and1l < i <n. Suppose thak =} , X; andy = E(X) = )", p;- Then we have

(b —7)?
Pr(X <7) <exp(-— T), forany0 < v < p. (5)
Pr(X > ) <exp (- M), for any~y > u; (6)
T

3. Pseudo Code for Computing the Similarity Score for an NOE Pattern

Let B be the back-computed NOE pattern, and Yetbe the experimental NOESY spectrum. léetbe the error
tolerance in the NOESY spectrum in thith dimension, and let; be the uncertainty of the NOE peak position in the
jth dimension, wherg = 1,2,3. Let (w(a1),w(az2),w(as)) € B be the back-computed NOE peak for an expected
NOE ((al), (ag), (ag)). The pseudocode for calculating the similarity score betwtbe back-computed NOE pattdsn
and the experimental NOESY spectrifris given in Algorithm 3.1. For each rotamer, the computatibits similarity
score based on the Hausdorff distance using Algorithm Relsta(mw) time, wheremn is the number of back-computed
NOE peaks, ana is the total number of cross peaks in the experimental NOF®¥tsum.

4. Pseudo Code for NOE Assignment Algorithm HANA

Figure 1 shows the flow chart of our NOESY data interpretatipproach for the structure determination. The NOE
assignment process is divided into three phases: initidk d&signment (phase 1), rotamer selection (phase 2) and fil-
tration of ambiguous NOE assignments (phase 3). In thalMtDE assignment phase, all possible pairs of ambiguous
NOEs are assigned to a NOESY cross peak if the resonancesre$pgonding atoms fall within a tolerance window
around the NOE peak. In the rotamer selection phase, andedemodel of the Hausdorff distance (Section 4.3) is
used to measure the match between the back-computed NGnpatid the experimental spectrum, and thus choose
the ensemble of best rotamers with top match scores. Hereotamer selection is different from that in Ref. 12:



Algorithm 3.1 Similarity Score Calculation Based on the Hausdor ff Distance

FunctionHausdor ff_Score (B, Y') /* B is the back-computed NOE pattern, ayrids the NOESY spectrum. */
1 20, max, , 5,0 « 0;
2. m — |B|; /* m is the number of back-computed NOE peaks. */

3: for each(w(a1),w(az),w(as)) € B do

4: for each(p1,p2,p3) € Y do

5: if |[p1 — w(a1)| < 81 and [ps — w(az)| < §2 and |p3 — w(ag)| < d3 then

6: I* 6 is the error tolerance in the NOESY spectrum in jiedimension;j = 1,2, 3. */

s zo — [15_4 N(lw(ay) = pjl, 05);

8: I* N'(|]z — p|, o) is the probability of observing the differenge — 11| with meany and deviatioro. */
9: if g > Tmax then

10: Tmax < Z0;

11: end if

12: end if

13:  end for

14: 2 — 2 + Tmax,

15: end for

16: s +— z/m;

17: p — /2mp(1 — p); /* p is the probability for a back-computed NOE peak to randomly match an experimeatal 1§
18: 0 — 1 (®((1 —p)mp~ ') — ®((s — p)mp~'));  I*probability of a false random match. */

19: return (1 — 0)x/m;

rotamers in Ref. 12 were chosen statistically from a higieltion protein structure database, while our rotamer se-
lections are driven directly from the pattern match scotgvben back-computed and experimental NOE peaks. In the
last phase, ambiguous NOE assignments are filtered basé atraicture obtained by combining the high-resolution
backbone (Section 4.2) and the ensemble of chosen rotaifedinal NOE assignments are fed into standard structure
determination programs, such@BLOR/CNS or CYANA? for the structure calculation.

The following notations will be used in the description of NOE assignment algorithmANA (Algorithm 4.1).
LetY = {p1,...,pw} denote the set of experimental NOESY peaks, wheis the total number of NOESY peaks.
Let A, denote the set of atom triples that are assigned to peaket A = {a1,...,a,} denote the set of all atoms
(including all protons) in the protein, whegds the total number of atoms. Lé&t= {w(a1),...,w(a,)} denote the set
of chemical shifts for all atoms, whetga;) is the chemical shift of ator,. Letd; denote the error tolerance in thih
dimension for the initial NOE ambiguous assignment, whiete1, 2, 3. Letn be the number of residues in the protein,
and lett be the maximum number of rotamer in a residue. d;ptlenote the rotamerat residue, wherei = 1,...,n,
j=1,...,t. Letu denote the NOE upper-limit distance bound. Paienote the structure after combining the ensemble
of chosen rotamers with the backbone computed frma-EXACT, and letd(]| a; — a2 ||, P) denote the minimum
Euclidean distance between atomsanda, over all pairs of chosen rotamers in the three-dimensiomattsire P.

Let B;; = {b1,...,b,} denote the set of back-computed NOE peaks for rotamyewherem is the total number

of back-computed NOE peaks, abd= (w(a1),w(as),w(as)) denote the back-computed NOE peak for an expected
NOE (a1, az, a3) from rotamerr;;. Lets;; denote the similarity score of rotameg based on the extended Hausdorff
measure. LeRR; denote the ensemble of tégrotamers chosen at residue

The details ofHANA are as follows (Algorithm 4.1). In Phase 1 (namely initial BE@ssignment), for each cross
peak(p1,p2,p3) in the NOESY spectrum, we search the resonance list andnasige(s) of atoms(ay, as, as) to
(p1,p2,ps) such thap, — 61 < w(ar) < p1 + 01, p2 — J2 < w(az) < p2 + 02, andps — 03 < w(az) < p3 + 0s.

In the rotamer selection phase, we first place all rotamgiiato backbone by rotation and translation computed based
on the coordinates of ¥, C* and N atoms. Then for each protag in rotamerr;;, we search the backbone structure
and find all backbone protons that are within the NOE upper-bound limit from proteg (an extra 2.5 is added as
the correction of the upper-bound for every methyl grouxtNor each expected NO 1, a2, as), we back compute

its expected NOE peakv(a1),w(az2),w(as)) based on the mapping between each atom naraed corresponding
chemical shiftw(a) in the resonance list. LeB;; = {(w(a1),w(a2),w(asz))} denote the set of all back-computed
NOE peaks for rotamart;;. We next call the functiotausdor ff_Score to compute the match score between the NOE
patternB;; of rotamerr;; and the experimental NOESY spectrim Finally we pick the topk rotamers with highest
similarity scores at each residueln Phase 3 (namely filtration of ambiguous NOE assignmerg)first place the top

k rotamers (selected in the second phase) at each residuleaickbone, and then obtain a protein strucBreNote
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Fig. 1. Flow chart of our NOESY interpretation approach for the ctiuce determination.

that each sidechain atom in struct®ehask possible positions from the tdpchosen rotamers. Next, for each initial
NOE assignmenta, as, az) obtained in the first phase, we measure the Euclidean destzeteveen protong; andas

in structureP. Recall thati(|| a; — a2 ||, P) stands for the minimum Euclidean distance between atgrasida, over
all pairs of chosen rotamers in structi®e In HANA, an NOE assignmerft;, as, az) (from the initial NOE assignment
in Phase 1) is pruned, i(|| a; — az ||, P) is larger than the NOE upper-bound limit.

5. Proof of Theorem 5.1

In this section, we give the details of the proof for Theoref SVe first restate the theorem and then provide the proof.

Theorem 5.1. Suppose thaw sy, —mypp > max(my, \/mymg) -4/ Inmy. Then with probability at least—m; *,
our algorithm chooses the true rotamgrrather than the false rotamar;.

Proof: Let X,Y be random variables as defined in Lemma 5.1 in Ref. 15. Basedioalgorithm, the true rotamer
r; is chosen if and only if the similarity score of the true rotam is larger than that of the false rotams, that is,
2> mlf Thus, our goal is to prover(2- > mlf) >1—m; . We first calculate the upper boundRf( - < %),

the probability that the false rotamef is chosen. Since evel{tm% < mlf} is equivalent to the union of X <



Algorithm 4.1 Hausdor ff-based NOE Assignment (HANA)

Given L, Y, backbone, rotamer library. IE is the assigned resonance list, &rids the experimental NOESY spectrum. */
Phase 1 (Initial NOE Assignment):

1: for i + 1tow do /* w is the number of experimental peaks in the NOESY spectrum. */
20 A — 0 /* Initialization of NOE assignment for each NOESY peak. */

3: end for

4: for i +— 1tow do

5. forj « 1togdo /* q is the number of protons in the protein. */

6: a}; « heavy atom bond-connecteddg;

7. for k «+ 1togqdo

8: if [pi1 — w(ay)| < &1 and [pi2 — w(aj)| < 2 and |piz — w(ak)| < b3 then

9: A; HAiU{(aj,a;,ak)};

10: end if

11: end for

12:  endfor

13: end for

Phase 2 (Rotamer Selection):
1: for i + 1tondo /* nisthe number of residues in the protein. */

2 R; «— 0; /* Initialization for the set of chosen rotamers at residud/

3: forj« 1totdo /*tisthe maximum number of rotamers per residue. */

4 B;; — 0; /* Initialization for the back-computed NOE pattern for rotamjeat residue. */
5: sij < 0; /* Initialization for the similarity score of the back-computed NOE patt8y3. */
6: endfor

7: end for

8: for i «— 1tondo

9: forj < 1totdo

10: structureP « rotate and translate rotamey; into backbone;

11: for each protorug € r;; do I* ri; is the rotamey; at residuei. */

12: for each protoru; € backbonelo

13: as < heavy atom bond-connecteddg;

14: if d(|| a1 — a3 ||,P) < uthen

15: I*d(|| a1 — as ||,P) is the Euclidean dist. betw. protons andas in P, andu is the NOE upper-bound. */
16: Bij « Bi;j U{(w(a1), (w(az), (w(as))}

17: end if

18: end for

19: end for

20: si; < Hausdorff_Score(B;;, Y); /* Compute the similarity score betwedsy ; andY (see Algorithm 3.1). */
21: end for

22: sortall rotamergr;;|j = 1, ..., t} in descending order of scores;;

23:  R; —topkrotamersin{ry;|j = 1,...,t};

24: end for

Phase 3 (Filtration of Ambiguous NOE Assignment):
1: for i + 1ton do

2. for each rotamerc R; do /* R; is the set of chosen rotamers from Phase 2. */
3: structureP «— rotate and translateinto backbone

4:  end for

5: end for

6: for i — 1tow do

7: for each(ai,az,a3) € A; do /* A, is the set of initial NOE assignments from Phase 1. */
8: ifd(]| a1 — a3 ||,P) > uthen

9. A; = A;\ {(a1,a2,a3)}

10: end if

11: endfor

12: end for

13:return A; U... U A,

i} MY > ZLi} forall 1 < i < my, thatis,{ X < mlf} = Uz {X < i} A{Y > 244}, Thus, we have

Pr(iél)zgt:(Pr(Xgi).Pr(yZﬁ.

me Mmf i=1

i))- (7)

my

Lety = %TW For anyl < i < v, we have

Pr(X <i) Pr(Y > L .4
my

<Pr(X <i) (sincePr(Y > L .4) < 1)

— M

< Pr(X <#). (sincei < v)

Sincemyp, — mypy > max(my, \/mymy) - 4v/u Inmy > 0, we havemypy > mypy. Thus, we obtaid) < v =



mf“z‘mﬂ < . By Equation (5) from the Chernoff tail bounds (Details of tail bounds are provided in the optional

Appendix 2), we have

Pr(X <) =Pr(X < w)

me
Mmyps+mepy \2
<exp(-— (e = ™ ) )
< o
(mppe — mypig)?
—e (=g )
Fh

Sincem gy — mepy > 4mypr/ (e Inmyg, we have

16m2u; Inm

Pr(X <7) < exp(~— ol 1M
8mf.“t

= exp(—21lnmy)

Thus, we have

1
Pr(X < < — 8
(X <v) < e (8)
For anyy < i < my, we have
Pr(X <i)-Pr(Y > = i)
my
my . . .
<Pr(Y>—-9) (sincePr(X <) <1)
my
<Pr(Y > % 7). (sincey < 1)
t

Sincem g > mypy, We have

my _omy My Mgl

me Y T amp

myphy + Mg
2my

mepy +mepy
2mt N

Then by Equation (6) from the Chernoff tail boundgppendix 2), we have

myp + mt,uf)

> ny

Pr(Y > ") = Pr(y >

my 2mt
_ mypptmepy )2
<exp (- ez
/Uf + mf/g":““f
_ 2
= exp ( — (mfﬂt mtuf) )

2my (Mg pig + 3mypiy)
Sincem iy —mypy > 0, we havemy (m g +3mypp) < 2my(myppg+3mpp,) = 8mymyp,. From the condition

mype — My > 4 /Memy - /e Inmy, we have

16 1
Pr(Y > ms ) < exp(——mtmf'ut il
my 8m g g

= exp(—21lnmy)

Thus, we have



Pr(Y > . q) < . 9)
me my
By equations (8) and (9), we obtalitr(X <) - Pr(Y > ZIT i) < # forany1 < i < my. Thus, we have
pr < Xy Em:Pr(X <i)-Pr(y > ")
my  my Pl My

_ my 1 B 1

- | m% N me
ThereforePr(m% > mlf) >1-—m;t. [ ]

6. Time Complexity Analysis

We will analyze the time complexity of our NOE assignmentailipm HANA (Algorithm 4.1). We first restate Theo-
rem 5.3 and then provide the proof.

Theorem 5.3. HANA runs inO(tn? + tnlog t) time, wheret is the maximum number of rotamers at a residue arisl
the total number of residues in the protein sequence.

Proof: To analyze the algorithmic complexity of our NOE assignnadgorithm, we first recall some notations defined
previously. Letn be the number of residues in the protein sequence, and dietnote the total number of cross peaks
in the experimental NOESY data. Letlenote the maximum number of rotamers for every amino aciddrmrotamer
library. Let¢ denote the maximum number of atoms per residueglbet the total number of atoms in the protein, then
q=0(¢n).

The running time of the initial NOE assignment phase is bedny O(wq?) steps. In Phase 2, the initialization
in lines 1-7 takesO(tn) time. Since the number of protons in the backbone is bounged(l), the total number
of protons in a rotamer is less thgnthe loop in lines 1319 needsD(¢n) steps. The functiotdausdor ff_Score
takesO(mw) time to compute the similarity score between the back-cdethNOE patterrB;; and the experimental
NOESY spectrunY’, wherem is the number of back-computed NOE peak®si. Hence, the loop in lines-921 runs
in O(t(nf + mw)) time. Sorting all rotamers and selecting topotamers in lines 2223 only requires) (¢ log t) time.
Thus, the overall running time for Phase Zign) +n- O (t(mw+&n)) +n-O(tlogt) = O (tn(mw+£&n) +tnlogt).

In Phase 3 (namely the filtration of ambiguous NOE assignmplatcing all rotamers into the backbone (in lines3)
takesO(kn) time. In worst casg 4, | is bounded by)(¢?), whereg is the total number of atoms in the proteins. Hence
the total running time for lines-612 is O(wq?). Thus, Phase 3 runs i(kn + wg?) time. Therefore, the overall
running time forHANA is O(wgq?) + O (tn(mw +&n) +tnlog t) + O(kn +wq?) = O(wq? + tn(mw+&n) +tnlogt).

In general, itis safe to assume the number of atoms in a regduconstant, that is,= O(1). Thus,g = O(én) =
O(n). Also, since each proton can only have NOE interactions witlonstant number of other protons within A0
distance, we have = O(n) andm = O(n). Therefore, the running time &fANA is O(tn® + tnlogt) in the worst
case. |
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