




R926A of �2 and K942A of �3 within FF4 completely elimi-
nated the TCERG1 interaction with the 2,5,7,2,5,7-Ser(P) CTD
peptide, and the R922A mutation weakened the interaction.
Similarly, point mutations K981A, K982A, and K985A of �2
and K1000A or K1000E of �3 in FF5 either completely elimi-
nated or severely diminished the TCERG1 interaction with the
2,5,7,2,5,7-Ser(P) CTD peptide (Fig. 7C). Taken together, these
data define the �2, the following 310 helix, and the N terminus
of �3 of FF4 and FF5 as the primary CTD-docking sites of
TERG1 FF4–6. Interestingly, these CTD-docking sites of the
TCERG1 FF4–6 tandem repeat are distinct from that of the
PCTD-binding FF domain of HYPA/FBP11 that shows pertur-
bation on residues at theN terminus of�1 andN terminus of�3
(33), but they are similar to the binding surface of Prp40 FF1
that interacts with crooked necklike factor 1, a peptide unre-
lated to the PCTD.

DISSCUSSION

PCTDBinding Specificity of FF4–6—Modern structural biol-
ogy is based on a reductionist approach in that the minimal
functional unit of a target protein is isolated and probed at the
atomic level. In the case of TCERG1, the structures of individ-
ual FF domains have been studied in detail (34, 35) (also see
Protein Data Bank codes 2DOD, 2DOE, 2DOF, and 2E71

FIGURE 5. Structure of the TCERG1 FF4 – 6 tandem repeat. A, ribbon diagram of the FF4 – 6 tandem repeat revealing a rigid integral domain. Individual
FF domains are color-coded with FF4 in cyan, FF5 in orange, and FF6 in pink. B, superimposition of FF4, FF5, and FF6. C and D depict residues involved
in interdomain interactions between FF4 and FF5 and between FF5 and FF6, respectively. E, sequence-specific order parameters derived from the
random coil index (RCI-S2) (58). Secondary structures are labeled on the top, and regions of individual FF domains are color-coded as in A.

FIGURE 6. Correlation between observed (obs) and calculated (calc)1DHN
from the crystal structure of TCERG1 FF4 – 6. Error bars indicate uncertain-
ties of the RDC measurements.
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deposited by the RIKEN Structural Genomics/Proteomics Ini-
tiative). In contrast to the notion of individual FF domains as
functional units, ourNMR study of FF4–6 has revealed an inte-
gral tandem repeat domain in solution with a rotational corre-
lation time far exceeding that of isolated FF domains, and our
crystallographic study has further revealed a rigid FF4–6 tan-
dem repeat fold. The FF4–6 tandem repeat is topologically
similar to the previously reported tandem repeat structure of
FF1–3 (38), but it ismuch less flexible than FF1–3 as the assem-
bly of the FF4–6 is held together not only by an undisrupted
helix connecting neighboring FF domains but also by direct
domain-domain interactions between FF4 and FF5 and
between FF5 and FF6 (Fig. 8A). Taken together, these observa-

tions argue that the minimal function units of TCERG1 are not
individual FF domains but rather tandem FF repeats of FF1–3
and FF4–6, suggesting that functional studies utilizing individ-
ual FF domains or double FF domains may need to be
re-evaluated.
Except for FF6, which contains an insert helix (�1�), all of

the remaining FF domains of TCERG1 adopt a canonical FF
domain fold consisting of three orthogonal helices and a short
310 helix. Among the six FF domains of TCERG1, FF1, FF2, FF5,
and FF6 are highly basic with pI values exceeding 9.0, whereas
FF3 and FF4 have pI values slightly less than 7.0. Gasch et al.
(36) argue that the pI values dictate whether individual FF
domains are involved in PCTD binding. Contradictory to this

FIGURE 7. PCTD-docking sites of TCERG1 FF4 – 6. A, PCTD recognition by FF4 – 6 is mediated by residues within FF4 and FF5. TCERG1 residues experiencing
resonance perturbations during NMR titration of the 2,5,7,2,5,7-Ser(P) CTD peptide are mapped on the ribbon diagram of FF4 – 6 with C� atoms colored in pink.
Residues important for PCTD interaction as revealed by point mutagenesis studies are also mapped onto the ribbon diagram with C� atoms colored in orange.
B, electrostatic surface of FF4 – 6 highlighting the enrichment of basic residues in the two CTD-docking sites (CDS1 and CDS2). C, point mutations of basic
residues in the CTD-docking sites of FF4 – 6 disrupt or reduce its interaction with the PCTD in peptide column binding assays. M, molecular mass markers.
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proposal, several groups reported that TCERG1 FF1–3 domain
shows a very weak and barely detectable interaction with the
PCTD (35, 38). Our result presented here further invalidates
this notion as the slightly acidic FF4 and basic FF5 are involved
in binding to the 2,5,7,2,5,7-Ser(P) CTDpeptide rather than the
highly basic FF6. Furthermore, our mutagenesis studies
revealed two CTD-docking sites enriched with basic residues,
including Arg922, Arg923, and Arg926 of �2 and Lys942 of �3
within FF4 andLys981, Lys982, and Lys985 of�2 andLys1000 of�3
within FF5, that are required for high affinity interaction
between TCERG1 and PCTD. Because a significant portion of
these basic residues is either not conserved or replaced with
oppositely charged acidic residues in other FF domains of
TCERG1 (Fig. 8B), those FF domains, despite their overall
highly basic pI values, do not interact with the 2,5,7,2,5,7-hy-
perphosphorylated CTD. Therefore, the pI value alone is insuf-
ficient for prediction of the PCTD binding property of an FF
domain.
It is important to note that although PCTD-associating pro-

tein binding to singly phosphorylated CTD at Ser2, Ser5, or Ser7
positions or doubly phosphorylated CTD at Ser2 and Ser5 posi-
tions have been reported previously (61), no other protein has
been observed to require phosphorylation of all three Ser resi-
dues, including Ser2, Ser5, and Ser7, within the heptad repeat of
the CTD for high affinity binding. In contrast, our peptide col-
umn assays showed that the high affinity interaction of
TCERG1 FF4–6 with PCTD peptides requires the simultane-
ous phosphorylation at Ser2, Ser5, and Ser7 positions; addition-
ally, our in vivo pulldown assay showed that TCERG1 FF4–6
specifically interacts with hyperphosphorylated CTD only in
the presence of Ser7P but notwhen all of the Ser7 residues in the
heptad CTD repeats are replacedwith Ala. The�8-fold affinity
difference of TCERG1 FF4–6 binding to the 2,5,7,2,5,7-Ser(P)
CTD peptide over the same CTD peptide with a less optimal
phosphorylation pattern (2,5,2,5,2,5-Ser(P)) is comparablewith
the affinity variations reported for other well characterized
PCTD-associating domains, such as the Nrd1 CTD-interacting
domain and the SRI domain, for specific PCTD recognition (56,

62). Taken together, these results suggest that TCERG1 FF4–6
is the first example of a PCTD-associating protein specifically
recognizing Ser2P, Ser5P, and Ser7P of the heptad repeat for
high affinity CTD binding.
Implication of the Distinct 2,5,7-Ser(P) CTD-binding Epitope

of TCERG1—CTD has been implicated in a wide range of tran-
scription-associated functions. Different forms of CTD pre-
dominate at each stage of the transcription cycle and act as
recognition sites for recruiting various mRNA processing fac-
tors, therefore coupling transcription with mRNA processing
(7, 63). The most extensively studied aspect of CTD modifica-
tion has been the phosphorylation of Ser2 and Ser5 within the
consensus heptad repeat. For example, Ser5 phosphorylation is
primarily detected at the 5�-end of the genes, and its recogni-
tion by mRNA-capping enzymes enhances the activity of cap-
ping enzymes (63, 64). In contrast, Ser2 phosphorylation is
enriched at the 3�-end of the genes, recruiting transcription
termination factors, such asRtt103 andPcf11, and coordinating
the 3�-end processing (65, 66).
Besides Ser2 and Ser5 phosphorylation, Ser7P has recently

been discovered in bothmammalian and yeast cells (10, 57, 67).
Although Ser7P has initially been implicated in snRNA gene
expression (10), recent high resolution genome-wide occu-
pancy profiling has revealed widespread marks of Ser7P in the
RNAPII CTD for coding genes, indicating that the function of
Ser7P goes beyond snRNA processing (11–13). The profiles of
Ser2P, Ser5P, and Ser7P overlap in coding genes, hinting at the
possibility of simultaneous phosphorylation at Ser2, Ser5, and
Ser7 positions. Importantly, Ser7P is specifically enriched over
introns (12), suggesting a role for Ser7P in the regulation of
co-transcriptional splicing events. How Ser7P mediates the
assembly of the splicing complex remains a mystery.
Our results presented here provide a structural interpreta-

tion for the connection between the Ser7P enrichment at intron
and co-transcriptional splicing events.We show that TCERG1,
a transcription elongation regulator that interacts with the
splicing factors and the transcribing RNAPII, specifically rec-
ognizes the hyperphosphorylated CTD containing Ser2P,

FIGURE 8. Structural and sequence comparison of tandem FF repeats of TCERG1. A, comparison of the FF1–3 and FF4 – 6 tandem domains superimposed
with FF2 and FF5. B, sequence alignment of individual FF domains of TCERG1. Secondary structures are displayed on top of the sequences. Conserved
hydrophobic residues are colored in yellow, basic residues are in blue, and acidic residues are in pink. FF4 and FF5 residues important for PCTD interaction are
indicated by asterisks.
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Ser5P, and Ser7P marks. Therefore, Ser7P enrichment at
introns may likely serve as a signaling post for recruiting
adaptor proteins, such as TCERG1, to couple transcribing
RNAPII with spliceosomes to regulate co-transcriptional
splicing events.
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